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Quantum key distribution, which allows two
distant parties to share an unconditionally se-
cure cryptographic key, promises to play an
important role in the future of communica-
tion. For this reason such technique has at-
tracted many theoretical and experimental ef-
forts, thus becoming one of the most promi-
nent quantum technologies of the last decades.
The security of the key relies on quantum me-
chanics and therefore requires the users to
be capable of performing quantum operations,
such as state preparation or measurements in
multiple bases. A natural question is whether
and to what extent these requirements can
be relaxed and the quantum capabilities of
the users reduced. Here we demonstrate a
novel quantum key distribution scheme, where
users are fully classical. In our protocol, the
quantum operations are performed by an un-
trusted third party acting as a server, which
gives the users access to a superimposed single
photon, and the key exchange is achieved via
interaction-free measurements on the shared
state. We also provide a full security proof of
the protocol by computing the secret key rate
in the realistic scenario of finite-resources, as
well as practical experimental conditions of im-
perfect photon source and detectors. Our ap-
proach deepens the understanding of the fun-
damental principles underlying quantum key
distribution and, at the same time, opens up
new interesting possibilities for quantum cryp-
tography networks.

1 Introduction
Quantum key distribution (QKD) is a technique that
allows two distant parties, traditionally called Al-
ice and Bob, to exchange a cryptographic key in an
information-theoretic secure way. This means that
the security of the key relies on information theory

and cannot be broken even by an eavesdropper with
unlimited resources.

The first QKD proposal was the BB84 protocol,
introduced by Bennett and Brassard in 1984 [1]
(subsequently, Ekert introduced the E91 protocol
in 1991 [2]), which was proven secure several years
later [3–5]. Since then, much progress, both theo-
retical and experimental, has been made in the field.
The practicality of this technology is underlined by
numerous experimental and even commercial endeav-
ors, supporting its development [6–9].

Most QKD protocols require Alice or Bob to share
a quantum state, or a direct quantum channel, and
to perform quantum operations, i.e., operations on
quantum bits (qubits) that do not have any coun-
terpart in classical communication, such as genera-
tion or measurement in multiple bases. On the other
hand, it is known that if both parties are restricted
to classical communication, unconditional security is
unachievable for the key distribution problem. It is
therefore relevant for a fundamental understanding of
QKD to investigate how quantum the users’ opera-
tions and resources need to be in order to achieve
information-theoretic security.

A first step in this direction was made by intro-
ducing the semi-quantum model of cryptography in
2007 by Boyer et al. [10]. In this model, at least one
party must be “classical” in nature, i.e., restricted to
a limited set of operations on qubits, namely mea-
suring and/or preparing qubits in a single basis (usu-
ally the computational (Z) basis {|0〉 , |1〉}), or sim-
ply disconnecting from the quantum channel by allow-
ing any received quantum state to reflect back to the
sender. The use of “classical” in this terminology is
due to the fact that orthogonal quantum states from
a single measurement basis and states of classical sys-
tems are both fully distinguishable. The other parties
may be classical or quantum (naturally, at least one
party must be quantum) with a “quantum” user hav-
ing the ability to perform any quantum operation on
qubits allowed by the laws of physics. In the subse-
quent proposal [11], permuting or reordering the in-

Accepted in Quantum 2022-09-07, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

90
8.

01
78

0v
4 

 [
qu

an
t-

ph
] 

 1
8 

Se
p 

20
22

https://quantum-journal.org/?s=Experimental%20semi-quantum%20key%20distribution%20with%20classical%20users&reason=title-click
https://quantum-journal.org/?s=Experimental%20semi-quantum%20key%20distribution%20with%20classical%20users&reason=title-click


coming qubits using delay lines was considered as an-
other classical operation. Nevertheless, although one
can indeed argue that permuting physical systems is
inherently classical operation, doing so, especially in
photonic applications, is with the current technology
far more infeasible than any quantum operation used
in cryptographic protocols. Also, preparing and de-
tecting qubit states, albeit in a single basis, is tech-
nologically non-trivial.

Further development has shown that Alice’s oper-
ations can be as limited as Bob’s, provided that a
third party distributes entangled photons to the users
and performs measurements in different bases [12, 13].
Such a scheme, referred to as a mediated SQKD pro-
tocol, allows two classical users to establish a shared
secret key with one-another, using the help of a quan-
tum server which must prepare, and later measure,
quantum bits. However, this quantum server need
not be trusted, and in fact could be an all-powerful
adversary. Security was proven, but again, only for
the perfect-qubit scenario [12].

Since that original mediated-SQKD protocol, there
have been several advances both in new protocol de-
sign and in new security proof methods. A main re-
search goal in this field is to develop new protocols
which further reduce the requirements placed on ei-
ther the end-users or the server (or both). In terms
of reducing the complexity of the end-users, a proto-
col which did not require users to measure was pro-
posed in [13] (however, attacks against the protocol
were later discovered in [14]). On the other hand,
in [15, 16], protocols were developed which reduced
the server’s requirements. Namely, in [15] the server
need only send single qubit states to users but later
requiring a Bell measurement. In [16] single qubits
were used, both in the initial preparation stage and
in the subsequent server measurement, however a cy-
cle topology was required.

Beyond reducing end-user or server requirements,
another avenue of research in this area is in improving
either efficiency or noise tolerance of the protocol (or
both) and in developing new security proof methods.
In [17] a new multi-mediated model was introduced
which could improve noise tolerance at the cost of
efficiency, while in [18] a new protocol was introduced
which improved efficiency (though at the cost of noise
tolerance).

Most SQKD protocols up to this point have been
theoretical in nature, and assume perfect qubit chan-
nels, i.e., no photon loss or multi-photons are permit-
ted for their security to be valid. A SQKD protocol
immune to such imperfections was described recently
in [19] and was proven to be robust, meaning that
any attack which causes an adversary to gain non-zero
information on the key, necessarily creates a distur-
bance that may be detected with non-zero probability.
A second such protocol was proposed in [20], though
there security was only proven against a few specific

attacks. However, no full proof of security yet exists
for these protocols and so, their key rates and noise
tolerances are still unknown.

In general, while numerous SQKD protocols have
been proposed in the last decade [21], information-
theoretic proofs of security were developed only for a
few of them [12, 17, 18, 22, 23] and always in the ideal
scenario of perfect qubits, ideal devices and infinite
resources in the asymptotic regime.

In this work, we propose a novel SQKD protocol
in the mediated model, allowing two classical users to
share a secret key using the help of an untrusted, po-
tentially adversarial, quantum server. In particular,
our protocol requires Alice and Bob to perform two
classical operations only, the detection or reflection of
a single photon, and hence places even fewer restric-
tions on the users than prior protocols of this nature,
by requiring only a single photon measurement and
no state preparation. We are the first to show that
such minimal requirements, on the part of the users,
is sufficient to generate a secret key. The server’s
complexity is also reduced compared to prior work,
needing only to prepare and measure single qubits.
Furthermore, as first for mediated SQKD research,
we conduct an information theoretic proof of security
of the protocol assuming practical devices, whereas
prior work in mediated SQKD was restricted to per-
fect qubit scenarios, and compute the secret key rate
in the finite key setting. Finally, we experimentally
demonstrate our protocol under real-life conditions
and evaluate the secret key rate by using the results
from actual devices. Our methods here may also be
broadly applicable to other multi-user (S)QKD pro-
tocols in practical settings.

2 The Protocol
Our protocol involves three parties: two classical
users, Alice and Bob, whose aim is to exchange a se-
cret cryptographic key, and an untrusted, potentially
adversarial, quantum server, which provides the quan-
tum resources for this purpose. Furthermore, we as-
sume that Alice and Bob can communicate through
a classical authenticated channel and that the server
can send unauthenticated classical messages to the
users. In the description below, we discuss the proto-
col for single photons for simplicity, and also they are
the most practical for QKD applications (though our
security analysis will also take into account realistic
multi-photon sources).

A sketch of the scheme is depicted in Figure 1. The
server sends to Alice and Bob a single photon in a
balanced superposition of their respective locations.
Each user can independently choose to perform two
actions: “detect” (D) or “reflect” (R). In the former
case, the photon travels to a detector controlled by
the user; in the latter, the photon is sent back to a
balanced beam splitter controlled by the server, at
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Figure 1: The QKD protocol with classical users. A quantum
server sends single photons in superposition to the users at pre-
determined regular intervals, which constitute the rounds of the
protocol. For each round, Alice and Bob randomly choose be-
tween ”detect” (D) and ”reflect” (R). The photons reflected back
to the server impinge onto a beam splitter at whose outputs two
detectors D0 and D1 are placed. When both Alice and Bob re-
flect the received photon, single-photon interference occurs at the
beam splitter and only detector D0 clicks. If only one of the users
chooses to detect the photon without registering any detection
event, interference is suppressed and the photon has ideally 50%
probability to reach detector D1. If the server announces a detec-
tion at D1 and none of the users detected photons, a raw key bit
is generated according to the table in the figure. The users can
communicate through a classical authenticated channel to verify
the honesty of the server and to share the necessary information
for the evaluation of the secure key rate.

whose output ports two detectors, D0 and D1, are
placed. When both users choose to reflect, single-
photon interference occurs at the beam splitter, with
the relative phase of the two interfering photon am-
plitudes tuned such that only detector D0 clicks. In
the ideal case of perfect detection efficiency, when
only one of the users chooses to detect the photon
and does not find any, the photon collapses into the
other user’s location. This corresponds to performing
an interaction-free measurement [24–26], which sup-
presses single-photon interference at the server and
allows either detector D0 and D1 to click with non-
zero probability. A click at detector D1, therefore,
enables each user to deduce the action of the other
one, thus allowing for the establishment of a raw key
digit. In particular, a key digit of 0(1) is set when
Alice chooses D(R) and Bob R(D). Other combina-
tions are not considered, as they cannot result in a
detection at D1. Since the raw key bits are generated
when the server announces a click at detector D1, and
neither Alice nor Bob detect a photon, no use of the
authenticated channels is needed during those rounds,
unlike the standard QKD protocols [1, 2]. In our pro-
tocol, classically authenticated information exchange
is performed only for the verification and parameter

estimation rounds, which are not used to generate the
raw key.

The detailed steps of the protocol are described be-
low:
Quantum Communication Stage: Users repeat the

following process until a sufficiently large raw key has
been established (refer also to Figure 1):

1. The server sends a single photon to both par-
ties in a superposition. Ideally this should be
performed by the server sending a single photon
through a beam splitter.

2. Alice and Bob choose, independently and ran-
domly, between two available actions: D or R.
Since Alice and Bob are completely classical, the
detection results only give them information as to
whether or not there is a photon at their respec-
tive detector DA or DB . Their actions determine
their raw key bit for this round, namely:

• Alice: If Alice chose D, she will record a
raw key-bit of 0; otherwise, if she chose R,
she will record a raw key-bit of 1.

• Bob: Bob’s encoding is opposite that of
Alice; namely if he chose D he will record a
raw key bit of 1 and, otherwise, a raw key
bit of 0 if he chose R.

3. The server measures the photon coming from Al-
ice/Bob and announces the following results: “0”
if the server’s detector D0 clicks; “1” if detec-
tor D1 clicks; “v” if no detector clicks; or “m”
if more than one detector clicks. Ideally, this
measurement should be performed by the server
completing a (folded) Mach-Zehnder interferom-
eter as shown in Figure 1. Note that the last
case can arise due to experimental imperfections
or the action of an adversary.

4. Alice and Bob perform a minimal sifting step
whereby they will keep the round only if the fol-
lowing two conditions are met:

• The server announces the message “1”

• and Alice and Bob both did not detect a
photon if they chose to measure.

All other events will cause the round to be dis-
carded. Note that, for this, Alice and Bob must
announce whether they detect a photon or not.
In the event parties choose R they will, by de-
fault, announce that they did not detect a pho-
ton.

Sampling Stage: Users will communicate, through
an authenticated channel, their actions and measure-
ment outcomes (if applicable) for a randomly chosen
subset of the rounds performed above. This is done to
verify the honesty of the server and/or the presence
of an adversary. More specifically, these statistics, as
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discussed below, will be used to determine a bound
on the overall key-rate of the protocol.

Post Processing Stage: After performing the above
sampling process and discarding those rounds chosen
for sampling, users will perform a standard error cor-
rection protocol and privacy amplification protocol
resulting in the final secret key of the system. For
information on these standard processes, the reader
is referred to [6].

It is not difficult to see that, if the server is honest,
the protocol is correct. Namely, the only time the
server should ever send the message “1” is when Alice
and Bob choose opposite actions (thus resulting in a
correlated raw key bit since their encoding operations
are opposites of one another). We show later that the
protocol can lead to a secure secret key even if the
server is adversarial.

3 Key generation and parameter esti-
mation
In this section, we discuss the events when raw key
bits are generated and the parameter estimation pro-
cedure (for details see Appendices A, C, and D).

Let N be the total number of successful rounds in
the protocol, i.e., whenever the server announces a
message from “v”, “0”, “1” or “m”. At the end of N
rounds, Alice and Bob communicate with each other
over an authenticated classical channel to proceed to,
first, the verification procedure, and then, to estimate
the parameters to eventually share a secret key among
them. Note that the server is bound to announce the
same results to both Alice and Bob, since it can eas-
ily be checked by the users when they communicate
over an authenticated channel. Therefore, upon hav-
ing all the indexed results from the server, each user
compares it with their own action. During the rounds
when the server announced “1”, when a user either
reflected, or detected vacuum, only then we say that
the user’s action is “consistent” with the server’s re-
sult, and no information is sent to the other client.
Otherwise, any of the users detecting inconsistency
announces it to the other one and the corresponding
round is discarded from the rounds for key-generation.
Such inconsistencies could be due to receiving a click
in their detectors, or receiving clicks even when they
reflected due to the failure in the switch used by them
to change between the actions reflect (R) or detect
(D).

Therefore, when the server announces “1” and both
users’ actions are consistent with such outcome, then
a raw key digit is generated. This occurs on total of
Nraw = p(1)N rounds, where p(1) denotes the prob-
ability that the server announces “1” and none of the
users detect any click(s). The cases when the server
announces “1” and both users reflected or both de-
tected vacuum determine errors in the key.

Note that in the majority of QKD protocols (for
instance, BB84), even the very first set of keys shared
by Alice and Bob requires them to communicate over
an authenticated channel. On the contrary, the first
set of shared key in our protocol does not require any
communication between the users, but only the mes-
sage “1” from the server.

Alice and Bob choose each action (R or D) inde-
pendently at random, with probability 1/2. Thus, the
cases when the key can potentially be generated oc-
cur with probability 1/2. In those cases, in ideal con-
ditions, there is a probability of 1/2 that the photon
collapses into the location of the user that reflects. Fi-
nally, the reflected photon has at best a further prob-
ability of 1/2 to come out from the beam splitter at
the output of detector D1. Therefore, p(1) is at best
1/8, which is further reduced by experimental imper-
fections, eavesdropping or the action of an adversarial
server.

For the rest of (1 − p(1))N rounds, the users ex-
change the information of their actions and detection
results over the classical channel in order to estimate
the parameters necessary for the establishment of a
secret key between them. Note that it is enough that
only one user, say Alice, performs the verification
with the information received from the other. This
allows for a reduction of the communication complex-
ity. In addition to his action choices and results for
the (1 − p(1))N rounds, Bob can also send the mes-
sages announced by the server over all the rounds.
Alice will proceed with parameter estimation only if
all of Bob’s messages match with hers.

Using the information received from Bob for the
(1 − p(1))N rounds, Alice can perform an indirect
estimation method to evaluate the probability of ex-
changing a key bit, pkey, and the probability of er-
ror on the key, perr, without the need to discard any
key bit. A drawback of this indirect estimation is
that pkey and perr are obtained from other directly-
measured quantities, therefore, due to error propaga-
tion, their uncertainty is higher. Alternatively, the
users can exchange full information about their ac-
tions for a randomly chosen fraction τ of Nraw rounds
to directly estimate the necessary probabilities. How-
ever, in the direct estimation, the uncertainty of the
final probabilities depends on the size τ of the con-
sidered sub-sample. The choice of which method to
use, therefore, depends on the experimental parame-
ters and the length of the raw key.

4 Experimental implementation
The experimental set-up for the implementation of
the protocol is depicted in Figure 2. After setting its
polarization to “horizontal”(H), that is parallel to the
optical table, a single photon is sent to a beam split-
ter that creates the superposition between Alice’s and
Bob’s locations. Each of the users controls a liquid-
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crystal cell (LCC) at 45◦ and a polarization beam
splitter (PBS). The phase retardation between the
two axes of the LCC can be switched between 0 and π
by means of a voltage signal. Consequently, the pho-
ton polarization is rotated by 0◦ or 90◦, respectively.
In the first case, the photon is transmitted by the PBS
and steered to a fiber-coupled avalanche photo-diode
(APD) for detection, DA or DB; in the second case,
the photon travels back to the server. The detection
efficiency of DA and DB is evaluated by comparison
with a fully-characterized transition-edge supercon-
ducting nanowire detector. The photons going back
to the server impinge onto a second beam splitter,
at whose outputs two fiber-coupled APDs, D0 and
D1, are placed. The set-up, therefore, implements a
folded Mach-Zehnder interferometer. The phase be-
tween the two arms of the interferometer is set such
that, when Alice and Bob both decide to reflect back
the photon, detector D0 clicks. The interferometer is
passively stabilized, so that the phase is constant for
about 100 s. After this time, the phase is actively
re-set to the initial value by using a piezo transducer.

The single photons are provided by a source based
on spontaneous parametric down-conversion (SPDC)
in a 20 mm-long periodically-poled potassium tytanyl
phosphate (PPKTP) crystal, which probabilistically
converts a photon at 395 nm from a continuous-wave
laser into two photons at 790 nm and with orthog-
onal polarizations. One photon from each produced
pair is used to herald the presence of the other one,
which is sent to the users. Therefore, all detections in
the experiment are in coincidence with the heralding
detector, DH. The server sets intervals of 0.5 s, consti-
tuting the rounds of the protocol, in which Alice and
Bob can decide to either detect or reflect the photons.
Note that this interval can be made shorter, in the
order of 10−8 s, by using ultra-fast switches and op-
timized bright single-photon sources [27]. At the end
of each round, the server announces the result of the
measurement at its detectors. The probabilistic na-
ture of our source implies that, in each round, multiple
non-simultaneous single-photon emissions can occur.
In some rounds, therefore, the total number of detec-
tions is higher than one. The output rate of the source
is decreased, so that the total average number of pho-
tons sent to the users is about 0.35 per round, in order
to reduce the probability of multi-photon emissions.

The possibility of simultaneous multi-photon emis-
sion from the source is ruled out by the measurement
of the heralded second-order correlation function at
zero delay, g(2)(0) [28], which should be exactly 0
for an ideal perfect single-photon source. We obtain
g(2)(0) = 0.004 ± 0.010, measured at a total detec-
tion rate of about 15× 103 photons per round (in our
case 0.5 s) and a pump power of 7 mW. Our value of
g(2)(0) is comparable with the lowest ones obtained
in quantum optics experiments [29].

5 Security analysis
We prove security of our protocol under the following
assumptions:

1. The server may be compromised by the adver-
sary. In particular, it may prepare an arbitrary
initial state and perform an arbitrary quantum
operation on the returning signals (both subject
to the other constraints listed below). Due to
this assumption, we must only analyze the case
of a single adversary, namely the server, and any
third party adversary’s attack may be absorbed
into this adversarial server’s attack strategy (to
the advantage of the adversary).

2. The adversary performs collective attacks only.
That is, the adversary attacks by using an iden-
tical attack operation at each iteration (both for
the initial state preparation strategy and the final
quantum operation strategy, including the mes-
sage sending). The server’s initial state may be
entangled with a private quantum ancilla and the
final operation may also result in a private quan-
tum memory system. The adversary is free to
postpone measuring its ancilla until any future
point in time and may even perform an arbitrary
global measurement of its entire ancilla at that
future point in time.

3. The attack performed by the adversary on
each iteration of the protocol is not interac-
tive/adaptive. In particular, the adversary must
prepare an initial state once at each iteration and
send it to Alice and Bob. Although this ini-
tial state may consist of multiple photons, the
server cannot feed a photon into Alice or Bob’s
lab, and then, based on the output, immediately
feed additional photons into Alice or Bob’s lab.
While this seems a strong assumption, there are
mechanisms to enforce its compliance as we dis-
cuss in Appendix B.1. Although a full analysis
of interactive attacks would be very interesting,
we consider it out of scope of this paper as we
are primarily focused on the development, finite
key analysis, and experimental demonstration of
a novel mediated SQKD protocol with minimal
end-user resource requirements. We do, however,
consider an interactive attack based on a “quan-
tum bomb” attack in Appendix B.1.

4. The initial state sent by the server consists of
zero, one, or two photons prepared in an ar-
bitrary manner. This was done as our experi-
mental implementation consisted of a negligible
probability of producing three or more photons.
It is also an enforceable condition if Alice and
Bob used cascading interferometers to ensure the
state, with high probability, does not contain

Accepted in Quantum 2022-09-07, click title to verify. Published under CC-BY 4.0. 5



Figure 2: Experimental set-up. The regions of space occupied by Alice, Bob and the server are respectively marked in red, blue and
green, whereas the path of the photons is indicated by red lines. The server uses a heralded single-photon source and a beam splitter
(BS1) to produce the superposition state that is sent to Alice and Bob. Each of the users controls a switch, composed of a liquid-crystal
cell (LCC) at 45◦, a polarization beam splitter (PBS) and a mirror. By switching the voltage of the LCC, the users can choose to steer
the photon to a detector (D) or reflect it back to the server (R). The server collects the reflected photons at a second beam splitter
(BS2), where single-photon interference takes place in case both users choose to reflect. The server records the detections at D0 and D1
and announces the results to the users via a classical channel.

more than two photons. Our proof methodol-
ogy, however, can be extended to consider the
three or more photon case (assuming the attack
is non-adaptive in this round as discussed above)
if required. While we do not work out the exact
algebra in this paper for that case, we do con-
sider a particular multi-photon attack with three
or more photons in Appendix B.2.

After Alice and Bob receive quantum states of some
form from the server and perform their respective
actions, they will receive a classical message from
the sever indicating a possible measurement outcome.
However, the server is under no obligation in our proof
of security to report the measurement outcome hon-
estly, or to even perform any measurement at all. On
the rounds where the server announces “1”, Alice and
Bob generate the raw key of length Nraw whenever
one of them chose to detect the photon without reg-
istering any click at the detector, while the other re-
flected. Note that due to experimental imperfections
and eavesdropping (or server’s dishonesty), server can
announce “1” even if both agents reflected, or both

detected vacuum, in which case they do not share the
same raw key and the error is introduced. As men-
tioned before, from the raw key of size Nraw = p(1)N ,
Alice and Bob may choose to use a (small) subset of
size µ = τNraw to directly estimate the statistics used
to compute the secret key rate. The portion of the
raw key remaining after parameter estimation step is
called the sifted key, of the length Nsift = Nraw − µ.
Let the random variables RA and RB denote Alice’s
and Bob’s respective sifted keys. After the quantum
communication and sampling stages, it is not neces-
sarily true that RA and RB are uniformly distributed
or fully correlated. It is also not necessarily true that
they are completely secret. Thus, the protocol must
perform a classical post processing stage which further
processes these raw key strings through error correc-
tion (to ensure they are perfectly correlated with high
probability) and privacy amplification (which ensures
that Eve’s ancilla is independent of the final secret
key.

The security level of the key shared between Alice
and Bob is given by parameter ε, which quantifies how
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uncorrelated the secret key is from Eve or a dishonest
server. More formally, from [30, 31], one should have:∣∣∣∣∣∣∣∣ρKE − IK

2` ⊗ ρE
∣∣∣∣∣∣∣∣ ≤ ε, (1)

where ρKE is the classical-quantum state modeling
the secret key (after error-correction and privacy am-
plification) and Eve’s ancilla, while IK/2` ⊗ ρE is an
ideal uniform random key of size `-bits independent
of Eve. The security criterion requires ε to tend
to zero as the number of rounds N tends to infin-
ity, thus obtaining perfectly secret key in the asymp-
totic scenario. One can compute the sifted key rate
as r′ = limN→∞ `/Nsif = S(A|C) − H(A|B) using
results in [5]. Conditional Shannon entropy H(A|B)
can be easily computed using the probabilities pi,j of
Alice and Bob establishing the raw key bit values i
and j, respectively. Further, the secret key rate is de-
fined as r = `/N = r′(Nsift/N), which is the same as
the sifted key rate in the asymptotic regime: since in
order to obtain good enough statistics during the ver-
ification procedure, the number µ, albeit big, is still
finite, we have Nsif = N − µ ≈ N , for N → ∞. In
the realistic case of limited resources, however, where
Alice and Bob can exchange only a finite number of
keys, we must take into account the imperfect param-
eters. Using the security criterion given by [31], let
us denote εPE as a given error tolerance for the pa-
rameter estimation. One can further compute δ, as
a function of εPE , a confidence interval so that the
observed parameters are δ close to the actual values,
except with probability εPE . Let ε be the desired se-
curity of the final secret key, and let εEC be the max-
imal probability that Bob computes error correction
incorrectly. All of these are given by the user. There-
fore, after µ rounds are used for the direct method of
parameter estimation, the proportion of qubits used
for estimating the secret key rate is (p(1)N − µ)/N .
Using the results shown in [31], under the assumption
of collective attacks, we have the following Theorem:

Theorem 1. (Modified from [31]): Let ρ⊗NAC be the
state of the quantum system produced by executing the
protocol N times. Then, the key-rate r is bounded by:

r ≥ p(1)N − µ
N

(
S(A|C)ρ −

leakEC + ∆
p(1)N − µ

)
, (2)

where

∆ = 2 log2

(
1

2(ε− εEC − ε′)

)
+ 7
√

(p(1)N − µ) log2(2/(ε′ − εPE)). (3)

Above, S(A|C)ρ is the conditional von Neumann
entropy of Alice’s raw key bit register conditioned
on the server’s quantum memory system. The
value leakEC quantifies the error-correction leakage
(namely, the number of classical bits exchanged be-
tween Alice and Bob during the error correction pro-
tocol). Finally, ε is the desired distance to an ideal

key (as in Equation 1); εPE is the user specified error
tolerance for the parameter estimation; εEC is the fail-
ure probability of the error correction protocol; and
ε′ is arbitrary (chosen by the user to maximize the
expression) but bounded by ε− εEC > ε′ > εPE ≥ 0.

Of course, users don’t have an exact description of
ρ needed to directly compute S(A|C) above. Thus,
to actually compute the key-rate r, S(A|C) is mini-
mized over all observable statistics within the given
confidence interval (so that the actual statistics of
the real density operator are within δ(εPE) of the ob-
served statistics, except with probability εPE). Later,
in our security proof, we will use a theorem from
[32], stated below as Theorem 2, to actually bound
the entropy S(A|C). The value leakEC represents
the number of (classical) bits exchanged between Al-
ice and Bob during the error correction. Again, us-
ing [31], we take leakEC/(p(1)N − µ) = (1.2)h(Q),
where Q = perr/p(1) and perr is the probability to
generate opposite key bits during the entire protocol.
Note that µ will also be a function of εPE , since the
smaller that is, the larger µ will be.

Theorem 2. (From [32]): Let ρAC be a quantum
state of the form:

1
N

2∑
a=0
|a〉 〈a|A ⊗

(
N∑
i=1
|F ai 〉 〈F ai |C

)
. (4)

Then, the von Neumann entropy S(A|C)ρ may be
bounded by

S(A|C)ρ ≥
1
N

∑
i=1,N

(
〈F 0
i |F 0

i 〉+ 〈F 1
i |F 1

i 〉
)

×
[
h

(
〈F 0
i |F 0

i 〉
〈F 0
i |F 0

i 〉+ 〈F 1
i |F 1

i 〉

)
− h(λi)

]
,

where

λi = 1
2

1 +

√
(〈F 0

i |F 0
i 〉 − 〈F 1

i |F 1
i 〉)2 + 4Re2 〈F 0

i |F 1
i 〉

〈F 0
i |F 0

i 〉+ 〈F 1
i |F 1

i 〉

 .

At a high level, our security proof involves bound-
ing the conditional von Neumann entropy S(A|C) of
the system assuming an adversarial server. This is
achieved by first writing out an explicit description
of the overall state’s density operator (including the
photons in the interferometer, the agents, and the
Server/adversary). We then show how certain im-
portant qualities of the state, namely the overlap of
various ancilla vectors of the adversary, may be de-
termined through observable statistics (such as, for
instance, perr). Finally, we use Theorem 2 to bound
the conditional entropy and Theorem 1 to determine
a final bound on the secret key rate. These steps are
algebraically involved and so are derived in detail in
the appendices. Namely, in Appendix C we derive the
key rate for the ideal-qubit case. This first stage also
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helps to develop the intuition of the proof used for
the more complicated scenario involving practical de-
vice imperfections, presented in Appendix D. Bound-
ing S(A|C) is the critical, and challenging, element
of any QKD security proof. The techniques to bound
this quantity developed in this work may be useful in
other protocols as well.

Our security analysis takes into account the finite
detection efficiencies of commercial single-photon de-
tectors and multi-photon components in the quantum
state received by Alice and Bob (see Appendix A), but
does not consider other imperfections which can be
used by an eavesdropper to gain information about
the key. This is in general an issue for all crypto-
graphic protocols, both classical and quantum, as it
is in practice very challenging to consider all potential
side channels in the security analysis [33–37]. How-
ever, specific attacks can be countered by technical
adaptations of the experimental set-up. As an exam-
ple, let us consider the frequency dependence of the
APD’s detection efficiency. By sending photons at fre-
quencies outside the detection bandwidth of the users’
detectors, an eavesdropper can in fact gain informa-
tion about the agents’ actions while remaining com-
pletely undetected. This specific issue can be solved
by employing bandpass filters that block any incoming
light at undetectable frequencies. Similar strategies
can be used for other degrees of freedom which the
eavesdropper could exploit to prepare undetectable
photons (e.g. time, spatial mode, etc.). Current pho-
tonic technology provides effective filtering systems
for all these degrees of freedom [38–41], which allows
the users to counter the described category of attacks
at the price of a more complicated set-up and a re-
duction in the secret key rate.

6 Experimental Results
To obtain the numerical values from the lower-bounds
on S(A|C) and other terms from the expression (2) for
the secret key rate, r, we measure the probability of
the raw key generation, pkey, and the probability of
error in the raw key, perr, after 105 rounds of the pro-
tocol. Formally, pkey is defined to be the probability
of Alice and Bob not rejecting a round, while perr is
the probability that, conditioned on a raw key bit be-
ing distilled, that the raw key bit contains an error
(e.g., Alice has a 0 while Bob has a 1). Note that
105 rounds is not sufficient to actually produce a se-
cret key through this protocol under these operating
conditions as our later evaluations show; however, it is
sufficient as a proof of concept to gather experimental
statistics and evaluate what the key-rate would be had
we continued the experiment for a longer duration.

The values of pkey and perr are evaluated in three
different ways: direct estimation over the full data
set, direct estimation over a randomly chosen subset
of 104 rounds and indirect estimation. In the direct

Direct Method Direct Method Indirect Method
(full dataset) (subset) (full dataset)

pkey 1.55(3)× 10−2 1.5(1)× 10−2 1.5(3)× 10−2

perr 7.5(8)× 10−4 5(2)× 10−4 3(3)× 10−3

Table 1: Evaluation of key generation and error rates. The
probabilities of raw-key generation, pkey and error on a key digit,
perr, respectively, are shown per round (in our case an interval
of 0.5 s). In the table, the numbers in parentheses are the errors
on the last digits, obtained with the assumption of poissonian
uncertainty on the counts.

estimation, the users sacrifice a part of the raw key
for verification procedure (see Appendix E.1 for de-
tails). In the indirect estimation, discussed in detail
in Appendix E.2, Alice obtains pkey and perr, using
the information received from Bob during the veri-
fication phase. This allows the parties to avoid the
loss of key digits, at a price of higher uncertainty on
the estimated values, which are calculated from sev-
eral experimentally obtained quantities, each with its
error. The results are reported in Table 1.

Based on the probabilities in Table 1, we obtain
the dependence of the final secret key rate, r, on the
number of rounds, N , see Equation (2). This depen-
dence is plotted in Figure 3, for different values of
the detection losses of DA and DB, assumed to be the
same. The details of how the curves were obtained
are discussed in Appendices D and F. As expected,
an increase in the detection loss degrades the perfor-
mance of the protocol.

80%
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Number of rounds, N
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Figure 3: Secret key rate vs number of rounds, for different
values of detection loss. The black dashed curve refers to the
experimental implementation, corresponding to a detection loss
of 42% for each Alice and Bob. The red, cyan, blue, magenta
and orange curves represent the calculated results for detection
losses of 0, 3, 25, 42 and 80%, respectively. If the detection loss
increases, the number of rounds for which r becomes positive also
increases, while the asymptotic secret key rate decreases. In the
implemented case, the secret key rate becomes positive after about
4.9× 106 rounds.

We also report in Figure 4 the dependence of the
secret key rate on the loss in the quantum channel
between the server and each user, assumed to be the
same for both, Alice and Bob. We present plots for
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different values of the detection efficiency and the
quantum bit error rate (QBER), which is defined as
the fraction of errors in the sifted key. More details
on how these plots are obtained can be found in Ap-
pendix G.
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pd = 100%, QBER = 0

pd = 58%, QBER = 0.058

pd = 58%, QBER = 0
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Figure 4: Secret key rate vs channel transmission loss, for dif-
ferent values of detection efficiency and quantum bit error rate
(QBER). The black dashed curve corresponds to the experimental
parameters, with a detection efficiency of 58% for each Alice and
Bob and a QBER of 0.058. The magenta, red and blue curve
represent the three following ideal situations, respectively: perfect
detectors and experimentally obtained QBER, imperfect detectors
and QBER = 0, perfect detectors and QBER = 0. All curves
are obtained by considering 109 rounds of the protocol and the
statistics of the used single-photon source.

Given the results of Figure 4, we can compare the
performance of our protocol to that of other QKD
schemes. A natural candidate for the comparison
is measurement-device-independent (MDI) QKD [42],
which also involves an external server performing the
detection. To our knowledge the best implementa-
tion to date of MDI-QKD achieves a secret key rate
of about 10−4 for 7 dB of channel transmission loss
[43]. We obtain a similar key rate at the same trans-
mission loss, as shown by the dashed line in Figure 4.
However, the secret key rate for our experimental pa-
rameters quickly decreases for higher losses, contrary
to the realization in [43], where a secret key rate of
4.9 × 10−6 is reported for 20.4 dB of loss. Neverthe-
less, by considering QBER = 0, we obtain rates of
the order of 10−4 for about 18 dB of channel loss.
These results indicate that our protocol can perform
as good as MDI-QKD for transmission losses up to
about 7 dB, at least within the boundaries of our ex-
perimental implementation. At the moment, it is not
clear if the performance could be made comparable
also for higher losses, which however would require a
more advanced experimental realization of our proto-
col.

Additionally, we stress that our estimated rates are
lower-bounds and the actual key rates could be signifi-
cantly higher. Indeed, to compute these lower bounds
on S(A|C), we took advantage of the strong sub-
additivity of von Neumann entropy by actually dis-
carding several components of the entropy function
(components which would only have increased Eve’s

uncertainty – thus, by discarding them, we are giving
an unrealistic advantage to the adversary causing the
key rate to drop). Such a method gives a worst-case
computation.

7 Conclusions
In our work, we propose and experimentally imple-
ment a novel QKD protocol allowing two classical
users to establish a shared secret key using the ser-
vices of an untrusted quantum server, which provides
a superimposed single photon as a feasible quantum
resource. We underline the applicability of our scheme
by providing an information-theoretic security analy-
sis of our protocol in the finite-key setting, which takes
into account imperfect detection efficiency and multi-
photon emission from the source, and by calculating
the secret key rate.

Experimentally, the main challenge of the protocol
is that it requires phase stability in the interferometer
formed between the users and the server. This issue
can be addressed by using intrinsically phase-stable
schemes, like Sagnac configurations [44]. In this case,
however, a quantum channel between Alice and Bob
is also necessary.

As an immediate future line of research, our secu-
rity analysis of finite keys in the presence of experi-
mental imperfections can be applied to show the same
security levels for other cryptographic schemes, such
as counterfactual quantum cryptography [45–49], or
the key distribution based upon recently proposed
two-way communication with one photon [50, 51].

In practical terms, recent progresses in bright de-
terministic single-photon sources [52], high-efficiency
detectors [53] and fast switches [27] promise to push
our scheme towards real-world applications.
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A Extraction of the secret key
In order to compute the secret key rate described above, one needs to compute S(A|C) for a given system.
Before we proceed to discuss the ideal and experimental scenario, let us first define some useful terminology.

Let us denote the Hilbert spaces corresponding to Alice’s and Bob’s equipments as HA =
span{|Dc〉A , |Dv〉A , |D`〉A , |D′`〉A , |D

′
c〉A , |R〉A} and HB = span{|Dc〉B , |Dv〉B , |D`〉B , |D′`〉B , |D

′
c〉B , |R〉B}, re-

spectively. Here, |Dc〉 and |Dv〉 denote the states of a detector, the first corresponding to the case of a photon
causing a click, and the second corresponding to the case when there were no photons, resulting in a no-click.
The detectors’ state corresponding to the case when an incoming photon was lost is denoted as |D`〉. The state
|D′`〉 corresponds to a loss, while |D′c〉 to a click, of the photon at time t′ 6= t, when two non-simultaneous
photons were emitted by the source at times t and t′. Finally, |R〉 denotes the state of a reflecting mirror. Note
that the states corresponding to a click, |Dc〉 and |D′c〉, and the ones corresponding to no-click, |Dv〉, |D`〉 and
|D′`〉 are macroscopically distinguishable between each other as groups of those with or without clicks; and also
to |R〉. However, the first two, |Dc〉 and |D′c〉, are not distinguishable among each other, since in our set-up,
Alice and Bob do not keep track of the detection times. Moreover, the latter three states, |Dv〉, |D`〉 and |D′`〉,
also cannot be distinguished among each other, since without performing sophisticated quantum measurements,
one cannot distinguish whether a detector did not click because there were no photons present, or they were
lost.

We denote the server’s Hilbert space as HS = span{|0〉S , |1〉S , |v〉S , |m〉S} consists of macroscopic orthogonal
states modeling classical messages “0”, “1”, “v” (vacuum) and “m” (multiple clicks), respectively. Additionally,
we denote server’s ancilla system by C, spanned by the Hilbert space HC , which a dishonest server can entangle
with the photons sent to Alice and Bob to extract information about the exchanged key.

Let us assume Alice tosses a fair coin to decide whether she will detect or reflect the photon, and set the initial
state of the apparatus accordingly, resulting in a proper mixture of the two states, |Dv〉A 〈Dv| and |R〉A 〈R|, and
analogously for Bob. Without the loss of generality, we can always include the coin states into the macroscopic
description of the apparatus states, such that the purified initial state of Alice’s apparatus is

|φ0〉A = 1√
2

(
|Dv〉A + |R〉A

)
, (5)

and analogously for Bob, making their joint state as

|φ0〉AB= 1
2

(
|Dv,R〉AB + |R,Dv〉AB + |Dv,Dv〉AB + |R,R〉AB

)
. (6)

Note that due to possible imperfect single-photon sources, and the presence of adversaries, the number of
photons present is not necessarily fixed to be one. Thus, we will use a number basis to describe the photonic
states. In this paper, we will decompose the overall Fock space of the photons in Alice’s and Bob’s arms as
Ff =span{|0, 0〉f , |1, 0〉f , |0, 1〉f , |2, 0〉f , |1, 1′〉f , |1′, 1〉f , |0, 2〉f} ⊕Fkf , where |0, 0〉f ≡ |v〉f represents the vacuum
state, |1, 0〉f represents a photon in Alice’s arm and |0, 1〉f to be in Bob’s arm. Similarly, |2, 0〉f , and |0, 2〉f ,
represent two non-simultaneous photons in Alice’ and Bob’s arms, respectively; whereas |1, 1′〉f and |1′, 1〉f
represent the case of two non-simultaneous photons when the first one went to Alice’s arm while the second to
Bob and vice-versa, respectively. Fkf denotes the sub-space corresponding to the multi-photon case of k > 2
photons. The action of photonic creation operators â† and b̂†, in terms of the number basis |a, b〉f , with a, b ∈ N0

being the number of photons in Alice’s and Bob’s arms, respectively, is given by (â†)a(b̂†)b |0〉f =
√
a! b! |a, b〉f .

We can now proceed to analyze the experimental implementation of our protocol with imperfect single-photon
sources and detectors, as well as the noisy and lossy channels.
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We assume an untrusted server that can attack before Alice and Bob perform their respective operations,
as well as after (which is equivalent to allowing Eve to intercept the photons exchanged between an honest
server and the agents). We consider a poissonian probabilistic single photon source, emitting vacuum state
with probability p0, single photons with probability p1, two non-simultaneous photons with probability p2, etc.,
within a time slot of interval T , as

|φ0〉f = √p0 |v〉f +
√

p1
T

∫ T

0
â†(t) |v〉f dt+

√
p2
T

∫ T

0

∫ T

0

(
â†(t)â†(t′)√

2
|v〉f

)
dtdt′+ . . . , (7)

where â†(t) and â†(t′) represent photon creation at times t and t′, respectively. In our particular implementation,
the average number of photons is 0.35, yielding p0 = 0.705, p1 = 0.247, p2 = 0.043. For simplicity, and in
order to compare the theoretical analysis with our experimental data, the probability to emit higher numbers
of photons is considered negligible, i.e., p0 + p1 + p2 ≈ 1. Thus, the initial photon state is

|φ0〉f = √p0 |v〉f +√p1 |1〉f +√p2 |2〉f , (8)

where |v〉f ≡ |0〉f is the photon vacuum state, |1〉f = â†(t) |v〉f ,
√

2 |2〉f = â†(t)â†(t′) |v〉f . Nevertheless, our
analysis can straightforwardly generalised to an arbitrary number of emitted photons. Note that, for simplicity,
we omitted the time integrals in the definition of the single- and two-photon states, |1〉f and |2〉f , respectively,
as we consider that the users do not keep track of the photon detection times, meaning that, at the end of each
round, Alice, Bob and the server only have access to the number of detections they recorded. This makes our
analysis also applicable to the case of simultaneous multi-photon emission.

After passing through the first 50/50 beam splitter of our interferometer, described by â†(t) → (â†(t) +
b̂†(t))/

√
2 and â†(t′)→(â†(t′) + b̂†(t′))/

√
2, the above state becomes

|φ0〉f = √p0 |v〉f +
√

p1
2

(
|1, 0〉f + |0, 1〉f

)
+
√

p2
2

(
|2, 0〉f + |1, 1′〉f + |1′, 1〉f + |0, 2〉f

)
. (9)

Upon possible further action of the adversary, the most general photon-server (normalized) state is given by

|φ0〉fC =
∑
a,b≥0
a+b≤2

|a, b〉f |ca,b〉C

= |0, 0〉f⊗ |c0,0〉C
+ |1, 0〉f⊗ |c1,0〉C+ |0, 1〉f⊗ |c0,1〉C
+ |2, 0〉f⊗ |c2,0〉C + |0, 2〉f⊗ |c0,2〉C + |1, 1′〉f⊗ |c1,1′〉C + |1′, 1〉f⊗ |c1′,1〉C . (10)

where |ca,b〉C ∈ HC (not necessarily orthogonal, nor normalized states) are associated to the cases when there
are a and b photons entering Alice’s and Bob’s arms, respectively. Nevertheless, the states |ca,b〉C are arbitrary
and contain any number of photons. Therefore, the overall state before the photon(s) enter Alice’s and Bob’s
labs is

|φ0〉ABfC = |φ0〉AB⊗ |φ0〉fC

= 1
2

(
|Dv,Dv〉AB+|Dv,R〉AB+|R,Dv〉AB+|R,R〉AB

)
⊗
(
|0, 0〉f ⊗ |c0,0〉C
+ |1, 0〉f ⊗ |c1,0〉C+ |0, 1〉f ⊗ |c0,1〉C
+ |2, 0〉f ⊗ |c2,0〉C + |0, 2〉f ⊗ |c0,2〉C + |1, 1′〉f ⊗ |c1,1′〉C + |1′, 1〉f ⊗ |c1′,1〉C

)
. (11)

Let us denote Alice’s and Bob’s respective detectors’ efficiencies as pAd and pBd , with the respective losses
being pA` = 1 − pAd and pB` = 1 − pBd . In our experimental implementation, the two efficiencies are almost the
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same, with pAd ≈ pBd ≈ 58%. The individual actions of, say, Alice, in this practical scenario are

|Dv〉A |0〉f → |Dv〉A |0〉f ,

|Dv〉A |1〉f →
(√

pA` |D`〉A +
√

pAd |Dc〉A
)
|0〉f ,

|Dv〉A |2〉f →
(

pA` |D`D
′
`〉A +

√
pA` pAd |DcD

′
`〉A

+
√

pA` pAd |D`D
′
c〉A + pAd |DcD

′
c〉A
)
|0〉f ,

|R〉A |0〉f → |R〉A |0〉f ,

|R〉A |1〉f → |R〉A |1〉f ,

|R〉A |2〉f → |R〉A |2〉f ,

(12)

where primed and unprimed states of the apparatuses correspond to at times t′ and t, respectively. Note
that we assume that Alice and Bob trust their detectors with their finite detection efficiencies. Therefore,
upon applying U1, given in terms of Alice’s and Bob’s local actions described by (12), we obtain the state
|φ1〉ABfC = U1 |φ0〉ABfC .

Upon leaving Alice’s and Bob’s labs, the server (or Eve) will apply a quantum instrument to the returning
photon-server state. This can be modelled as an isometry I : Ff ⊗HC → HS ⊗HC , given by

I |a′, b′〉f |ca,b〉C = |0〉S |e
a,b
a′,b′〉

C
+ |1〉S |f

a,b
a′,b′〉

C
+ |v〉S |g

a,b
a′,b′〉

C
+ |m〉S |h

a,b
a′,b′〉

C
, (13)

where states |ea,ba′,b′〉
C
, |fa,ba′,b′〉

C
, |ga,ba′,b′〉

C
, |ha,ba′,b′〉

C
∈ HC are again not necessarily normalized, nor orthogonal.

Note that, due to the action of U1, the photon numbers a, b are no longer correlated to a′, b′ ∈ {0, 1, 2};
nevertheless, we still have a′ + b′ ≤ 2. From this, one obtains the final state between the users and the server,
|φ2〉ABSC = I |φ1〉ABfC . Using Theorem 2, one can lower bound the conditional entropy S(A|C), as explained
in detail in the next section.

B Two particular attacks

B.1 Adaptive attack with a single photon

The adaptive attack with a single photon that is fed in an agent’s laboratory several times during a single round
of the key distribution protocol is based on the interaction-free measurement proposed in [54], depict in Figure 5.
An agent, say Alice, is placed in one arm of an interferometer which consist of an input polarizing beam splitter
and standard balanced beam splitter on its output. Before entering the interferometer, the initial polarization
state, say horizontal state |ψ0〉 = |H〉, is rotated by a certain angle θ, so that before the polarizing beam splitter
it is |ψθ〉 = cos θ |H〉 + sin θ |V 〉. In case Alice decided to “reflect”, at the output of the interferometer the
polarization state of the photon will stay the same, |ψθ〉. In case she decided to “detect”, with probability sin2 θ
the photon will end up in Alice’s laboratory and be absorbed, while with probability cos2 θ it will leave the
interferometer in polarization state |ψ0〉. In the case of the latter, the process is repeated, up to M times. If
the rotation angle is chosen to be θ = π/2M , after M iterations the polarization state will be |ψπ/2〉 = |V 〉 in
case Alice decided to “reflect”, while it will stay “frozen” to |ψ0〉 = |H〉 in case she decided to “detect”, i.e., the
two states will be fully distinguishable, and Eve would know Alice’s action. The probability that a photon will
not end in Alice’s arm M consecutive times when she decided to “detect” is p = cos2M θ = (cos π

2M )2M , which
for large M behaves like p ∼ 1−π2/4M → 1. Thus, with probability arbitrarily close to 1 Eve can learn Alice’s
action without triggering her detector (“activating the bomb” from the original scenario discussed in [54]).
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Figure 5: Eve’s attack based on interaction-free measurement.

But in our case, the aim of Eve is to simulate, as much as possible, the honest scenario, in which Alice’s
detector will click in about half of the cases. This is achieved with pretty good accuracy for M = 4 already, as
we have that p = (cos π8 )8 ≈ 0.53. Nevertheless, if Eve wanted to learn the actions of both agents, she would
need to perform two such measurements performed on both agents. But this would inevitably lead to increased
double clicks in rounds when both agents decide to “detect” (Note that in order to learn the action of a single
agent, say Alice, Eve should perform measurement after her laboratory, thus destroying any possible coherence
between photon(s) state in Alice’s and Bob’s labs). During the parameter estimation phase, Alice and Bob can
infer such increased probability of coincidences, and thus detect eavesdropping.

B.2 Multi-photon attack
This is a version of the above interaction attack in which instead of sending a single photon through the
interferometer M times, Eve sends M photons only once, in order to learn action of a single agent. Thus, it
suffers from the same deficiency as the previous attack: Alice’s photon detection is not correlated with Bob’s
one and therefore will change the joint detection statistics. Again, note that in order to learn the action of
a single agent, Eve must perform her measurement on the photons outside her/his lab, thus destroying any
possible coherence. In other words, sending a coherent superposition between photon states sent to Alice and
Bob offers no advantage.

But this attack features additional problem, in that Eve cannot fully distinguish between an agent’s actions,
leading her to announce inconsistent messages allowing Alice and Bob to additionally detect cheating. Let us
first describe this attack in more detail. Eve sends a multi-photon state |Ψθ(M)〉 = |ψθ〉⊗M = (cos θ |H〉 +
sin θ |V 〉)⊗M . If Alice decides to “reflect”, Eve will receive the same M -photon state |Ψθ(M)〉 at the output of
the interferometer. In case she decides to “detect” and at least one of the photons ends in her arm, there will
be less then M photons at the output of the interferometer, and Eve can thus infer Alice’s action. But if not
a single photon gets detected by Alice, at the output of the interferometer we would have the M -photon state
|Ψ0(M)〉 = |ψ0〉⊗M = |H〉⊗M . Thus, Eve cannot distinguish the two actions by measuring the photon number,
and she needs to subsequently perform polarization measurement. The optimal discrimination probability for
the two states is given in terms of the transition probability p̃ = |〈Ψ0|Ψθ〉|2 = |〈ψ0|ψθ〉|2M = cos2M θ, which is
precisely the probability that in the case of deciding to “detect” none of M photons end up in Alice’s arm. On
the other hand, as before we want that this probability is equal to 1/2, to match the honest scenario. Thus,
if Eve wants to emulate the honest scenario, she must set θ such that the output polarization states are far
from fully distinguishable. In other words, the adversary will necessarily occasionally announce messages that
are inconsistent with the agents’ actions, thus revealing eavesdropping. One can straightforwardly apply our
methodology to this case to obtain quantitative expression for the secret key rate. Therefore, we omit this
rather complex, but straightforward analysis.

C Security Analysis - Ideal case
In Appendix D, we show how to prove the security of our protocol in the general case, assuming practical
devices. To develop the intuition behind the proof in that section, however, we first consider the ideal case
scenario. Here, we assume that the server has a perfect single-photon source, Alice’s and Bob’s detectors are
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perfect, which means they have 100% detection efficiency and zero dark counts, but there may be channel loss.
Therefore, the perfect single photon state that Alice and Bob expect to be sent is

|φ0〉f =
(
â† + b̂†√

2

)
|0, 0〉f =

|1, 0〉f + |0, 1〉f√
2

, (14)

with |1, 0〉f and |0, 1〉f representing the photon located in Alice’s and Bob’s arms, respectively. However, we
assume that the following entangled state is sent to Alice and Bob by the server (or Eve)

|φ0〉fC = |0, 0〉f ⊗ |c0,0〉+ |1, 0〉f ⊗ |c1,0〉C + |0, 1〉f ⊗ |c0,1〉C (15)

where |ca,b〉C ∈ HC are not necessarily orthogonal nor normalized. Note that, this is the state arriving at A
and B’s lab, and so it also incorporates channel loss in the |0, 0〉f ⊗ |c0,0〉 term. Moreover, as per usual in
QKD security proofs, Alice and Bob can enforce symmetry, and so, we may assume 〈c0,1|c0,1〉C = 〈c1,0|c1,0〉.
Therefore, we can write the joint initial state as

|φ0〉ABfC = |φ0〉AB ⊗ |φ0〉fC (16)

= 1
2

(
|Dv,R〉AB + |R,Dv〉AB + |Dv,Dv〉AB + |R,R〉AB

)
⊗
(
|0, 0〉f |c0,0〉C + |1, 0〉f |c1,0〉C + |0, 1〉f |c0,1〉C

)
.

Alice’s and Bob’s actions on a given initial photon state are given by

|Dv,R〉 |1, 0〉 → |Dc,R〉 |0, 0〉 , |R,Dv〉 |1, 0〉 → |R,Dv〉 |1, 0〉 ,
|Dv,R〉 |0, 1〉 → |Dv,R〉 |0, 1〉 , |R,Dv〉 |0, 1〉 → |R,Dc〉 |0, 0〉 ,

|Dv,Dv〉 |1, 0〉 → |Dc,Dv〉 |0, 0〉 , |R,R〉 |1, 0〉 → |R,R〉 |1, 0〉 ,
|Dv,Dv〉 |0, 1〉 → |Dv,Dc〉 |0, 0〉 , |R,R〉 |0, 1〉 → |R,R〉 |0, 1〉 ,
|Dv,Dv〉 |0, 0〉 → |Dv,Dv〉 |0, 0〉 , |R,R〉 |0, 0〉 → |R,R〉 |0, 0〉 ,
|Dv,R〉 |0, 0〉 → |Dv,R〉 |0, 0〉 , |R,Dv〉 |0, 0〉 → |R,Dv〉 |0, 0〉 ,

(17)

and, therefore

|φ1〉ABfC = 1
2

[
|Dc,R〉 |0, 0〉 |c1,0〉+ |Dv,R〉 |0, 1〉 |c0,1〉+ |R,Dv〉 |1, 0〉 |c1,0〉C + |R,Dc〉 |0, 0〉 |c0,1〉

+ |Dc,Dv〉 |0, 0〉 |c1,0〉+ |Dv,Dc〉 |0, 0〉 |c0,1〉+ |R,R〉
(
|1, 0〉 |c1,0〉+ |0, 1〉 |c0,1〉 (18)

+ |Dv,Dv〉 |0, 0〉 |c0,0〉+ |Dv,R〉 |0, 0〉 |c0,0〉+ |R,Dv〉 |0, 0〉 |c0,0〉+ |R,R〉 |0, 0〉 |c0,0〉
]
.

Following this, as in the experimental case, the adversary will apply a quantum instrument to the returning
photon state which, as before, can be modeled as an isometry, whose action is defined as

I |a′, b′〉f |ca,b〉C = |0〉S |e
a,b
a′,b′〉

C
+ |1〉S |f

a,b
a′,b′〉

C
+ |v〉S |g

a,b
a′,b′〉

C
, (19)

where states from HC are not necessarily normalized nor orthogonal, and a, b are no longer correlated with a′, b′

due to Alice’s and Bob’s actions given by Equation (17). Note that since we are assuming an ideal case, the
term corresponding to the message “m” is absent from the above equation.

We are interested only in the rounds when the server announces “1” and neither Alice nor Bob detect a
photon, and the users generate the key. Thus, while writing the state after the server applies I on |φ1〉ABfC , we
will omit writing the server’s message state |1〉S (corresponding to announcing a result “1”). The final density
operator representing the state of the system ABC, conditioned on the event that the server sends the message
“1” and none of the users detects a photon (only the rounds used for key generation), is

|φ2〉ABC= 1√
N

{
|Dv,R〉⊗ |k0,0〉+ |R,Dv〉⊗ |k1,1〉+ |R,R〉⊗ |k1,0〉+ |Dv,Dv〉⊗ |k0,1〉

}
, (20)
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where the states |ki,j〉C are associated to Alice establishing the value i and Bob j as a key bit, are given by

|k0,0〉C = 1
2

[
|f0,1

0,1 〉+ |f0,0
0,0 〉
]
,

|k1,1〉C = 1
2

[
|f1,0

1,0 〉+ |f0,0
0,0 〉
]
,

|k0,1〉C = 1
2 |f

0,0
0,0 〉 ,

|k1,0〉C = 1
2

[
|f1,0

1,0 〉+ |f0,1
0,1 〉+ |f0,0

0,0 〉
]
.

(21)

Note that, though we are assuming in this ideal setting, that A and B’s devices are ideal, the adversarial server
may still “simulate” imperfect detectors which may have, for instance, dark counts (incorporated in the term
〈f0,0

0,0 |f
0,0
0,0 〉 which is the probability the server sends a positive message in the event a vacuum actually enters

its lab). The normalization constant N is, again, the probability to obtain the result 1, p(1), when there were
no clicks at the users’ detectors, and is given by

N = 〈k0,0|k0,0〉+ 〈k1,1|k1,1〉+ 〈k1,0|k1,0〉+ 〈k0,1|k0,1〉 = p(1). (22)

As in the experimental case, we define p0,0 = p(Dv,R ; 1) = 〈k0,0|k0,0〉 as the joint probability for the event
when Alice detects vacuum and Bob reflects, and the server announces the result “1”, and analogously p1,1,
p0,1 and p1,0. Again, we use the semicolon (;) to denote logical AND operation between two propositions.
Therefore, we can define the probability to share the key as pkey = p0,0 + p1,1 and the probability of an error
as perr = p0,1 + p1,0. When we evaluate our key rate bound, we use Q to be the probability that the server
announces the result “1”, given both Alice and Bob reflected, conditioned on a photon arriving at the server.
Finally, we allow the adversarial server to “simulate” dark counts at a rate of pd (to its advantage), and we
use T to mean the probability of transmittance in one direction, namely 1− T is the probability the photon is
dropped before it gets to A or B (the probability the photon returns to the server if A and B reflect is T 2). In
the ideal case, it is easy to see that

p0,0 = 〈k0,0|k0,0〉 = 1
4

(
T 2

4 + T (1− T )pd
2

)
, p0,1 = 〈k0,1|k0,1〉 = (1− T )pd

4 ,

p1,1 = 〈k1,1|k1,1〉 = 1
4

(
T 2

4 + T (1− T )pd
2

)
, p1,0 = 〈k1,0|k1,0〉 = Q · T

2

4 .

(23)

Expanding Re 〈k0,0|k1,1〉, needed for the entropy bound computation, we find:

Re 〈k0,0|k1,1〉 = 1
4(Re 〈f0,1

0,1 |f
1,0
1,0 〉+ Re 〈f0,0

0,0 |f
0,0
0,0 〉+ Re 〈f0,1

0,1 |f
0,0
0,0 〉+ Re 〈f0,0

0,0 |f
1,0
1,0 〉) (24)

Expanding 〈k1,0|k1,0〉 we find:

〈k1,0|k1,0〉 = 1
4(〈f1,0

1,0 |f
1,0
1,0 〉+ 〈f0,1

0,1 |f
0,1
0,1 〉+ 〈f0,0

0,0 |f
0,0
0,0 〉+ 2Re(〈f0,1

0,1 |f
1,0
1,0 〉+ 〈f0,1

0,1 |f
0,0
0,0 〉+ 〈f1,0

1,0 |f
0,0
0,0 〉)).

⇒Re(〈f0,1
0,1 |f

1,0
1,0 〉+ 〈f0,1

0,1 |f
0,0
0,0 〉+ 〈f1,0

1,0 |f
0,0
0,0 〉) =

4 〈k1,0|k1,0〉 − (〈f1,0
1,0 |f

1,0
1,0 〉+ 〈f0,1

0,1 |f
0,1
0,1 〉+ 〈f0,0

0,0 |f
0,0
0,0 〉)

2 (25)

Substituting Equation (25) into Equation (24) we have:

Re 〈k0,0|k1,1〉 = 1
2 〈k1,0|k1,0〉 −

1
8(〈f1,0

1,0 |f
1,0
1,0 〉+ 〈f0,1

0,1 |f
0,1
0,1 〉+ 〈f0,0

0,0 |f
0,0
0,0 〉). (26)

The term 〈f0,0
0,0 |f

0,0
0,0 〉 is an observable quantity, it is simply 4 〈k0,1|k0,1〉 = 4p0,1. The values of 〈f0,1

0,1 |f
0,1
0,1 〉 and

〈f1,0
1,0 |f

1,0
1,0 〉 can be bounded by solving the following quadratic equation (derived from the expansion of 〈k0,0|k0,0〉

and 〈k1,1|k1,1〉 respectively):

〈f0,1
0,1 |f

0,1
0,1 〉+ 2 cos θ

√
〈f0,0

0,0 |f
0,0
0,0 〉
√
〈f0,1

0,1 |f
0,1
0,1 〉+ (〈f0,0

0,0 |f
0,0
0,0 〉 − 4 〈k0,0|k0,0〉). (27)

Similarly for 〈f1,0
1,0 |f

1,0
1,0 〉. This allows us to minimize |Re 〈k0,0|k1,1〉 |, thus minimizing the adversary’s uncertainty

(i.e., minimizing S(A|C)).
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At this point, we compute the conditional entropy between Alice and the adversary, S(A|C), for the rounds
where raw key bits are generated. Using Equation (20), the density operator, after dropping off-diagonal terms,
with |ki,j〉C〈kl,m|, for (i, j) 6= (l,m), is

ρABC = 1
N

(
|Dv,R〉AB〈Dv,R| ⊗ |k0,0〉C〈k0,0|+ |R,Dv〉AB〈R,Dv| ⊗ |k1,1〉C〈k1,1|

+ |R,R〉AB〈R,R| ⊗ |k1,0〉C〈k1,0|+ |Dv,Dv〉AB〈Dv,Dv| ⊗ |k0,1〉C〈k0,1|
)
.

(28)

The state |Dv,R〉 〈Dv,R|, describing Alice detecting without a click and Bob reflecting, is associated to a shared
key bit 0. Similarly, |R,Dv〉 〈R,Dv| is associated to a key bit 1. Whereas, |R,R〉 〈R,R| and |Dv,Dv〉 〈Dv,Dv|
corresponds to errors in the key, when the two users establish opposite key bit values.

Now that we have a description of the quantum state, we can use Theorem 2 to compute a bound on the
conditional entropy S(A|C) leading us to:

S(A|C) ≥ 〈k0,0|k0,0〉+ 〈k1,1|k1,1〉
N

[
h

(
〈k0,0|k0,0〉

〈k0,0|k0,0〉+ 〈k1,1|k1,1〉

)
− h(λ0)

]
, (29)

with λ0 is defined as in Equation (37).

We present the dependence of the secret key rate r on the total number of rounds N for different values of Q
(including the one obtained from the experimental set-up) in Figure 6 for T = 1. Other parameters are taken
from [31] as ε = 10−5, εEC = 10−10 and ε′ = 10−7. We also assume εPE = 10−11. In Figure 7, we report
key-rate as a function of total transmission loss in one direction where we set pd to be a negligible 10−8 to
consider ideal devices on the server also.
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Figure 6: The secret key rate r is plotted against N , for the ideal case of perfect single-photon sources and detectors. The blue, green
and magenta curves correspond to the values of Q to be 0.005, 0.025 and 0.05, respectively. Whereas, the red curve represents the
experimentally observed value of Q, 0.015.
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Figure 7: The secret key rate r is plotted against transmission loss in one direction (server to end-users), for the ideal case of perfect
single-photon sources and detectors in the asymptotic setting (taking the number of iterations to be infinite and with perfect error
correction).

D Security Analysis - General Case

By straightforward algebra, from Equations (11), (12) and (13), we get |φ2〉ABSC = I |φ1〉ABfC . However, we
are only interested in the key-generation rounds, i.e., we condition to the event when the server announces “1”
and neither Alice nor Bob receives a click. Hence, omitting writing the message state |1〉S , the final density
operator (without the off-diagonal terms) of the system ABC is

ρABC = 1
N

[
|Dv,R〉AB〈Dv,R| ⊗ |k0,0〉C〈k0,0|+ |R,Dv〉AB〈R,Dv| ⊗ |k1,1〉C〈k1,1|

+ |D`,R〉AB〈D`,R| ⊗ |k1
0,0〉C〈k

1
0,0|+ |R,D`〉AB〈R,D`| ⊗ |k1

1,1〉C〈k
1
1,1|

+ |D′`,R〉AB〈D
′
`,R| ⊗ |k2

0,0〉C〈k
2
0,0|+ |R,D′`〉AB〈R,D

′
`| ⊗ |k2

1,1〉C〈k
2
1,1|

+ |D`D
′
`,R〉AB〈D`D

′
`,R| ⊗ |k3

0,0〉C〈k
3
0,0|+ |R,D`D

′
`〉AB〈R,D`D

′
`| ⊗ |k3

1,1〉C〈k
3
1,1| (30)

+ |Dv,Dv〉AB〈Dv,Dv| ⊗ |k0,1〉C〈k0,1|+ |R,R〉AB〈R,R| ⊗ |k1,0〉C〈k1,0|

+ |D`,Dv〉AB〈D`,Dv| ⊗ |k1
0,1〉C〈k

1
0,1|+ |Dv,D`〉AB〈Dv,D`| ⊗ |k2

0,1〉C〈k
2
0,1|

+ |D`,D
′
`〉AB〈D`,D

′
`| ⊗ |k3

0,1〉C〈k
3
0,1|+ |D′`,D`〉AB〈D

′
`,D`| ⊗ |k4

0,1〉C〈k
4
0,1|

+ |D`D
′
`,Dv〉AB〈D`D

′
`,Dv| ⊗ |k5

0,1〉C〈k
5
0,1|+ |Dv,D`D

′
`〉AB〈Dv,D`D

′
`| ⊗ |k6

0,1〉C〈k
6
0,1|
]
.

Note that, as before, we use commas in the states from HA ⊗ HB to separate the quantum numbers defining
Alice’s and Bob’s apparatus states: |D`D

′
`,R〉AB means that Alice opted to detect, unsuccessfully (due to finite

detection efficiency) the two photons present in her lab, while Bob set his apparatus to reflect, etc. The states
|ki,j〉C , etc., are associated to the cases when Alice establishes the value i and Bob j as a key bit, and are given
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by

|k0,0〉 = 1
2

[
|f0,0

0,0 〉+ |f0,1
0,1 〉+ |f0,2

0,2 〉
]
, |k1,1〉 = 1

2

[
|f0,0

0,0 〉+ |f1,0
1,0 〉+ |f2,0

2,0 〉
]
,

|k1
0,0〉 = 1

2

√
pA`

[
|f1,0

0,0 〉+ |f1,1
0,1 〉
]
, |k1

1,1〉 = 1
2

√
pB`

[
|f0,1

0,0 〉+ |f1,1
1,0 〉
]
,

|k2
0,0〉 = 1

2

√
pA` |f

1′,1
0,1 〉 , |k2

1,1〉 = 1
2

√
pB` |f

1,1′

1,0 〉 ,

|k3
0,0〉 = 1

2pA` |f
2,0
0,0 〉 , |k3

1,1〉 = 1
2pB` |f

0,2
0,0 〉 ,

|k0,1〉 = 1
2 |f

0,0
0,0 〉 , |k1,0〉 = 1

2
[
|f0,0

0,0 〉+ |f1,0
1,0 〉+ |f0,1

0,1 〉+ |f2,0
2,0 〉 ,

+ |f1,1′

1,1′ 〉+ |f1′,1
1′,1 〉+ |f0,2

0,2 〉
]
,

|k1
0,1〉 = 1

2

√
pA` |f

1,0
0,0 〉 , |k4

0,1〉 = 1
2

√
pA` pB` |f

1′,1
0,0 〉 ,

|k2
0,1〉 = 1

2

√
pB` |f

0,1
0,0 〉 , |k5

0,1〉 = 1
2pA` |f

2,0
0,0 〉 ,

|k3
0,1〉 = 1

2

√
pA` pB` |f

1,1′

0,0 〉 , |k6
0,1〉 = 1

2pB` |f
0,2
0,0 〉 .

(31)

Above, as well as in rest of the Appendix, for simplicity we omit writing the labels of the quantum states (A,
B, C, S and f), whenever it is implicitly unambiguous to which space they belong by their quantum numbers
(Dv, 0, 0, etc.).

The normalization constant N from Equation (30) is the probability to obtain the result “1” when there were
no clicks at the agents’ detectors, given by

N = 〈k0,0|k0,0〉+〈k1
0,0|k1

0,0〉+〈k2
0,0|k2

0,0〉+〈k3
0,0|k3

0,0〉+〈k1,1|k1,1〉+〈k1
1,1|k1

1,1〉+〈k2
1,1|k2

1,1〉+〈k3
1,1|k3

1,1〉

+〈k0,1|k0,1〉+〈k1
0,1|k1

0,1〉+〈k2
0,1|k2

0,1〉+〈k3
0,1|k3

0,1〉+〈k4
0,1|k4

0,1〉+〈k5
0,1|k5

0,1〉+〈k6
0,1|k6

0,1〉+〈k1,0|k1,0〉 .
(32)

In ρABC , given by Equation (30), the state |Dv,R〉 〈Dv,R| describes Alice detecting without a click and Bob
reflecting, and is associated to a shared key bit of 0. Let us define p0,0 = p(Dv,R ; 1) = 〈k0,0|k0,0〉 as the
joint probability for the event when Alice detects vacuum and Bob reflects, and the server announces the result
“1”, which corresponds to the users sharing a key bit of 0. Here we use the semicolon (;) to denote logical
AND operation between two propositions. Note that |D`,R〉 〈D`,R|, |D′`,R〉 〈D′`,R|, and |D`D

′
`,R〉 〈D`D

′
`,R|

also correspond to a shared key bit of 0, and are a consequence of Alice’s imperfect detector and multi-photon
events. Therefore, one can analogously define the probabilities p1

0,0,p
2
0,0 and p3

0,0, such that the total probability
of the users sharing a key bit of 0 can be given by p̃0,0 = p0,0 + p1

0,0 + p2
0,0 + p3

0,0. Analogously, the probabilities,
p1,1,p

1
1,1,p

2
1,1 and p3

1,1, associated to a key bit 1 are defined. The kij ’s with i 6= j are associated to the errors,
i.e., when the two users establish opposite key bit values. From the above definitions, using kij and N , we have

〈k0,0|k0,0〉+ 〈k1
0,0|k1

0,0〉+ 〈k2
0,0|k2

0,0〉+ 〈k3
0,0|k3

0,0〉
N

= p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R|1). (33)

Here, by p(P|C) we denote the conditional probability that the proposition P holds (in the above case, Alice
detects and observes no clicks, while Bob reflects), given that the condition C is satisfied (in the above case,
the server announces “1”). Therefore, using the following terminology for different probabilities (to be used in
parameter estimation described in the next section), the probability to share the key is given by

pkey=
[
〈k0,0|k0,0〉+〈k1

0,0|k1
0,0〉+〈k2

0,0|k2
0,0〉+〈k3

0,0|k3
0,0〉
]
+
[
〈k1,1|k1,1〉+〈k1

1,1|k1
1,1〉+〈k2

1,1|k2
1,1〉+〈k3

1,1|k3
1,1〉
]

=
[
p0,0 + p1

0,0 + p2
0,0 + p3

0,0
]

+
[
p1,1 + p1

1,1 + p2
1,1 + p3

1,1
]

= p̃0,0 + p̃1,1

= p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R ; 1) + p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D

′
` ; 1), (34)

where p(Dv,R∨D`,R∨D′`,R∨D`D
′
`,R ; 1) represents the joint probability of the following event: Alice detects

vacuum, Bob reflects, and the server announces the result “1”; and analogously for the other term. As before,
we use the semicolon (;) to denote logical AND operation between two propositions, instead of introducing the
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additional parenthesis for the first one, and using the standard symbol ∧. The probability of error in the raw
key is given by

perr=
[
〈k0,1|k0,1〉+〈k1

0,1|k1
0,1〉+〈k2

0,1|k2
0,1〉+〈k3

0,1|k3
0,1〉+〈k4

0,1|k4
0,1〉+〈k5

0,1|k5
0,1〉+〈k6

0,1|k6
0,1〉
]
+〈k1,0|k1,0〉

=
[
p0,1 + p1

0,1 + p2
0,1 + p3

0,1 + p4
0,1 + p5

0,1 + p6
0,1
]

+ p1,0

= p̃0,1 + p̃1,0

= p(Dv,Dv ∨D`,Dv ∨Dv,D` ∨D`,D
′
` ∨D′`,D` ∨Dv,D`D

′
` ∨D′`D`,Dv ; 1) + p(RR ; 1), (35)

where p(Dv,Dv ∨D`,Dv ∨Dv,D` ∨D`,D
′
` ∨D′`,D` ∨Dv,D`D

′
` ∨D′`D`,Dv ; 1) represents the joint probability of

the event: Alice and Bob both detect vacuum, and that the server announces the result “1”; and analogously
for the other term. Note that the probabilities p̃i,j can be observed from the experiment directly.

To obtain the secret key rate, we again use the bound given in Theorem 2, as

S(A|C) ≥ 〈k0,0|k0,0〉+ 〈k1,1|k1,1〉
N

(
h

[
〈k0,0|k0,0〉

〈k0,0|k0,0〉+ 〈k1,1|k1,1〉

]
− h(λ0)

)

+
〈k1

0,0|k1
0,0〉+ 〈k1

1,1|k1
1,1〉

N

(
h

[
〈k1

0,0|k1
0,0〉

〈k1
0,0|k1

0,0〉+ 〈k1
1,1|k1

1,1〉

]
− h(λ1)

)

+
〈k2

0,0|k2
0,0〉+ 〈k2

1,1|k2
1,1〉

N

(
h

[
〈k2

0,0|k2
0,0〉

〈k2
0,0|k2

0,0〉+ 〈k2
1,1|k2

1,1〉

]
− h(λ2)

)

+
〈k3

0,0|k3
0,0〉+ 〈k3

1,1|k3
1,1〉

N

(
h

[
〈k3

0,0|k3
0,0〉

〈k3
0,0|k3

0,0〉+ 〈k3
1,1|k3

1,1〉

]
− h(λ3)

)

+ 〈k0,1|k0,1〉+ 〈k1,0|k1,0〉
N

(
h

[
〈k0,1|k0,1〉

〈k0,1|k0,1〉+ 〈k1,0|k1,0〉

]
− h(λ4)

)
,

(36)

where h(·) is the binary Shannon entropy, and λi’s are defined in the following way

λ0 = 1
2

1 +

√
(〈k0,0|k0,0〉 − 〈k1,1|k1,1〉)2 + 4Re2 〈k0,0|k1,1〉

〈k0,0|k0,0〉+ 〈k1,1|k1,1〉

 ,

λ1 = 1
2

1 +

√(
〈k1

0,0|k1
0,0〉 − 〈k1

1,1|k1
1,1〉
)2 + 4Re2 〈k1

0,0|k1
1,1〉

〈k1
0,0|k1

0,0〉+ 〈k1
1,1|k1

1,1〉

 ,

λ2 = 1
2

1 +

√(
〈k2

0,0|k2
0,0〉 − 〈k2

1,1|k2
1,1〉
)2 + 4Re2 〈k2

0,0|k2
1,1〉

〈k2
0,0|k2

0,0〉+ 〈k2
1,1|k2

1,1〉

 ,

λ3 = 1
2

1 +

√(
〈k3

0,0|k3
0,0〉 − 〈k3

1,1|k3
1,1〉
)2 + 4Re2 〈k3

0,0|k3
1,1〉

〈k3
0,0|k3

0,0〉+ 〈k3
1,1|k3

1,1〉

 ,

λ4 = 1
2

1 +

√
(〈k0,1|k0,1〉 − 〈k1,0|k1,0〉)2 + 4Re2 〈k0,1|k1,0〉

〈k0,1|k0,1〉+ 〈k1,0|k1,0〉

 .

(37)

The first four terms in S(A|C) correspond to the keys shared between Alice and Bob, while the last term
corresponds to errors in the key. However, we estimate the lower bound on S(A|C) by considering only the
first term since its contribution to the entropy is far larger than that of any of the other terms. From the
expression (37) for λ0, we see that minimizing S(A|C) essentially means minimizing Re 〈k0,0|k1,1〉. Therefore,
in addition to different probabilities obtained from the experiment, we also need to estimate Re 〈k0,0|k1,1〉. We
proceed by computing the lower bound for Re2 〈k0,0|k1,1〉, i.e., for |Re 〈k0,0|k1,1〉 |. Notice that the lower it is,
the closer to 1/2 λ0 is, i.e., the closer to 1 the h(λ0) is, and the worst case scenario for S(A|C), has the lowest
value.

Let us use the following notation for simplification,

|x〉 = |f1,0
1,0 〉+ |f2,0

2,0 〉 , |y〉 = |f0,1
0,1 〉+ |f0,2

0,2 〉 , |z〉 = |f1,1′

1,1′ 〉+ |f1′,1
1′,1 〉 . (38)
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We can rewrite |k0,0〉 and |k1,1〉 from Equation (31), to obtain Re 〈k0,0|k1,1〉 as

Re 〈k0,0|k1,1〉 = 1
4

[
〈f0,0

0,0 |f
0,0
0,0 〉+ Re 〈x|f0,0

0,0 〉+ Re 〈f0,0
0,0 |y〉+ Re 〈x|y〉

]
. (39)

From the error term, we have 〈k1,0|k1,0〉 = p(R,R|1)p(R,R) = Q/4, where Q = p(R,R|1) is the probability that
the server announces the result “1”, given both Alice and Bob reflected, and p(R,R) = 1/4. With straightforward
substitution from the above into Equation (39), with 〈f0,0

0,0 |f
0,0
0,0 〉 = 4 〈k0,1|k0,1〉 = 4p0,1, we get

〈k0,0|k1,1〉 = Q8 +
p0,1

2 − 1
8 [〈x|x〉+ 〈y|y〉+ 〈z|z〉]− 1

4

[
〈x|z〉+ 〈y|z〉+ 〈f0,0

0,0 |z〉
]
. (40)

In the ideal case, with no vacuum or multi-photon pulses, when 〈x|x〉 = 4 〈k0,0|k0,0〉 = 4p0,0 and 〈y|y〉 =
4 〈k1,1|k1,1〉 = 4p1,1, we recover the ideal case expression 26 from Appendix C. By writing 〈x|z〉 = | 〈x|z〉 |eϕx,z ,
we have

Re 〈x|z〉 = | 〈x|z〉 | cosϕx,y = || |x〉 || · || |z〉 || · | cosχx,z| cosϕx,z =
√
〈x|x〉

√
〈z|z〉 cos θx,z, (41)

where χx,z denotes the angle between |x〉 and |z〉 and cos θx,z ≡ | cosχx,z| cosϕx,z, and analogously for Re 〈y|z〉
and so on. Therefore, the final expression for Re 〈k0,0|k1,1〉 is

Re 〈k0,0|k1,1〉 = Q8 +
p0,1

2 − 1
8 [〈x|x〉+ 〈y|y〉+ 〈z|z〉]− 1

4

[√
〈f0,0

0,0 |f
0,0
0,0 〉
√
〈z|z〉 cos θf,z

]
−1

4

[√
〈x|x〉

√
〈z|z〉 cos θx,z +

√
〈y|y〉

√
〈z|z〉 cos θy,z

]
. (42)

To obtain 〈x|x〉 and 〈y|y〉, consider again |k0,0〉 and |k1,1〉 from Equation (31)

〈k1,1|k1,1〉=
1
4

[
〈f0,0

0,0 |f
0,0
0,0 〉+ 〈x|x〉+ 2Re 〈f0,0

0,0 |x〉
]
,

〈k0,0|k0,0〉=
1
4

[
〈f0,0

0,0 |f
0,0
0,0 〉+ 〈y|y〉+ 2Re 〈f0,0

0,0 |y〉
]
.

(43)

Note that 〈f0,0
0,0 |f

0,0
0,0 〉 = 4 〈k0,1|k0,1〉 = 4p0,1, 〈k0,0|k0,0〉 = p0,0 and 〈k1,1|k1,1〉 = p1,1. Therefore, solving the

quadratic equations obtained from (43), we get the following positive roots of
√
〈x|x〉 and

√
〈y|y〉,√

〈x|x〉 = 2
[
−√p0,1 cosθx,f +

√
p1,1 − (1− cos2θx,f ) p0,1

]
,√

〈y|y〉 = 2
[
−√p0,1 cosθy,f +

√
p0,0 − (1− cos2θy,f ) p0,1

]
.

(44)

Analogously, for 〈z|z〉 we have

〈z|z〉+ 2
[√
〈x|x〉 cos θx,z +

√
〈y|y〉 cos θy,z + 2√p0,1 cos θf,z

]
︸ ︷︷ ︸

β

√
〈z|z〉

+ 4
[
p0,1 − p1,0

]
+
[
〈x|x〉+ 〈y|y〉+ 2

√
〈x|x〉

√
〈y|y〉 cos θx,y

]
+ 4√p0,1

[√
〈x|x〉 cos θx,f +

√
〈y|y〉 cos θy,f

]
︸ ︷︷ ︸

γ

= 0,

(45)

where cos θx,z ≡ | cosχx,z| cosϕx,z and analogously for cos θy,z, cos θf,z, etc. Again, solving the above quadratic

equation, we can obtain the positive root of
√
〈z|z〉.

E Parameter estimation
Here, we briefly explain how to estimate the relevant probabilities, p0,0,p1,1 and p0,1, to compute S(A|C) in
Equation (36), to eventually obtain the secret key rate given by Equation (1) from the main text.

Due to the nature of this protocol, in the ideal case, one expects p(1) = 1/8 (see Appendix C for details),
which is further reduced in the experimental case of imperfect detectors, etc. Therefore, it is useful if these
probabilities could be computed without sacrificing any key-generation rounds. Below, we discuss the case with
direct estimation where Alice and Bob use part of the key to obtain these probabilities, as well as the case of
indirect estimation where no key-generation rounds are wasted.
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E.1 Direct estimation
Here, we sacrifice µ instances of the total Nraw key-generation rounds, to directly compute the relevant prob-
abilities. However, since Alice’s and Bob’s detectors are imperfect, they cannot compute p0,0 = p(Dv,R ; 1)
and p1,1 = p(R,Dv ; 1) directly, as they cannot differentiate the event Dv,R from the events D`,R, D′`,R
and D`D

′
`,R, and analogously for R,Dv. However, they can obtain p̃0,0 = p0,0 + p1

0,0 + p2
0,0 + p3

0,0 =
p(Dv,R ∨ D`,R ∨ D′`,R ∨ D`D

′
`,R ; 1) directly, and also p̃1,1. They can then compute p1

0,0 = 〈k1
0,0|k1

0,0〉,
p2

0,0 = 〈k2
0,0|k2

0,0〉 and p3
0,0 = 〈k3

0,0|k3
0,0〉, to eventually obtain p0,0. From Equation (31) one has

p1
0,0 = p(D`,R ; 1) = pA`

4

(
|| |f1,0

0,0 〉+ |f1,1′

0,1′ 〉 ||2
)
,

p2
0,0 = p(D′`,R ; 1) = pA`

4 〈f
1′,1
0,1 |f

1′,1
0,1 〉 ,

p3
0,0 = p(D`D

′
`,R ; 1) = pA

2

`

4 〈f2,0
0,0 |f

2,0
0,0 〉 . (46)

Even though Alice and Bob cannot compute the above probabilities, they can estimate them by looking at the
events corresponding to the clicks, using the expressions

p(Dc,R ; 1) = pAd
4

(
|| |f1,0

0,0 〉+ |f1,1′

0,1′ 〉 ||2
)
,

p(D′c,R ; 1) = pAd
4 〈f

1′,1
0,1 |f

1′,1
0,1 〉 ,

p(DcD
′
c,R ; 1) = pA

2

d

4 〈f2,0
0,0 |f

2,0
0,0 〉 . (47)

Therefore, we can write
(
p1

0,0 + p2
0,0
)

and p3
0,0 as

p1
0,0 + p2

0,0 =
(

pA`
pAd

)
p(Dc,R ∨D′c,R ; 1), p3

0,0 =
(

pA`
pAd

)2
p(DcD

′
c,R ; 1), (48)

where only p(DcD
′
c,R ; 1) can be obtained using the rounds when Alice gets double clicks in her detector.

However, p(Dc,R ∨D′c,R ∨D`D
′
c,R ∨DcD

′
`,R ; 1), corresponding to a single click in Alice’s detector, can also

be obtained directly. Hence,

p(Dc,R ∨D′c,R ; 1) = p(Dc,R ∨D′c,R ∨D`D
′
c,R ∨DcD

′
`,R ; 1)− p(D`D

′
c,R ; 1)− p(DcD

′
`,R ; 1). (49)

Also, we have

p(D`D
′
c,R ; 1) = pA` pAd

4 〈f2,0
0,0 |f

2,0
0,0 〉 = p(DcD

′
`,R ; 1). (50)

Therefore, the required probabilities p0,0 and p1,1 are

p0,0 = p̃0,0 −
(

pA`
pAd

)
p(Dc,R ∨D′c,R ∨D`D

′
c,R ∨DcD

′
`,R ; 1) +

(
pA`
pAd

)2
p(DcD

′
c,R ; 1),

p1,1 = p̃1,1 −
(

pB`
pBd

)
p(R,Dc ∨R,D′c ∨R,D`D

′
c ∨R,DcD

′
` ; 1) +

(
pB`
pBd

)2
p(DcD

′
c,R ; 1).

(51)

Additionally, to compute p0,1, required to estimate Re 〈k0,0|k1,1〉 from Equation (42), we use p0,1 = p̃0,1−p1
0,1−

p2
0,1 − p3

0,1 − p4
0,1 − p5

0,1 − p6
0,1. Again, using straightforward algebra, we have

p0,1 = p̃0,1 −
(

pA`
pAd

)
p(Dc,Dv ∨Dc,D

′
` ∨D′c,D` ∨DcD

′
`,Dv ∨D`D

′
c,Dv ; 1)

−
(

pB`
pBd

)
p(Dv,Dc ∨D`,D

′
c ∨D′`,Dc ∨Dv,DcD

′
` ∨Dv,D`D

′
c ; 1) (52)

− 3
(

pA`
pAd

)2
p(DcD

′
c,Dv ; 1)− 3

(
pB`
pBd

)2
p(Dv,DcD

′
c ; 1)− 3

(
pA` pB`
pAd pBd

)
p(Dc,D

′
c ∨D′c,Dc ; 1).

Using the direct estimation method to compute all the relevant probabilities, we obtain the secret key rate r
(from Equation (1) from the main text) in Figure 8. We consider the implemented number of rounds, 105, as a

Accepted in Quantum 2022-09-07, click title to verify. Published under CC-BY 4.0. 21



5.0×106 1.0×107 1.5×107 2.0×107
0

0.0005

0.001

Number of rounds, N

S
ec
re
t
ke
y
ra
te
,
r

Figure 8: Secret key rate, r, vs number of rounds, N , for the case of imperfect single-photon sources and detectors. The
probability necessary for the plot are obtained from the experimental data.

subset of a larger implementation and, therefore, use them to estimate the secret key rate. The probability of
server announcing “1” during these rounds is p(1) = 0.0162. Therefore, the amount of keys wasted during the
parameter estimations is 1620 bits.

The probabilities of Equations (51) and (52) are the following: p0,0 = (7.3± 0.3)× 10−3, p1,1 = (5.5± 0.3)×
10−3, p0,1 = (1.1± 0.9)× 10−4 and p1,0 = (5.1± 0.7)× 10−4.

We assume ε = 10−5, εEC = 10−10 and εPE = 10−11. The value ε′ is a factor in the min-entropy expression
used for the key rate computation and may actually be set by the user arbitrarily to maximize the key rate (see
Lemma 1 from [31]). However, for our evaluations we simply set ε′ = 10−7 (optimizing this could only improve
our results). For parameter estimation, we take εPE = 10−11 and assume a confidence interval δ = 10−4, given
our experimental errors. The calculated secret key rate corresponds to the minimum lower bound of the entropy
S(A|C) (see Equation (36)) over the confidence interval of the experimental probabilities. This minimum occurs
for the highest value of the error probability perr and the lowest of pkey, and therefore represents the worst
possible key rate within our experimental uncertainty.

E.2 Indirect estimation
To avoid wasting the rounds used for key-generation (when “1” was announced without any clicks at Alice’s and
Bob’s detectors), we can use the remaining rounds (when “0”,“v” or “m” was announced or “1” was announced
with click(s) at Alice’s and Bob’s detectors) for parameter estimation. For these cases, Alice and Bob can
communicate over an authenticated channel to convey their respective action choices and resulting states to
each other. Therefore, they can communicate for the non-useful rounds where server announces “0”,“v” or “m”,
as well as the rounds where any of them detects a photon in case the server announces “1”. This method can
be applied also in the ideal case described in Section C, but we present it only once for brevity.

We know that p0,0 = p(Dv,R ; 1) = p(Dv,R) − p(Dv,R ; 0) − p(Dv,R ; v) − p(Dv,R ;m), where p(Dv,R) =
p(D,R)−p(D`,R)−p(D′`,R)−p(Dc,R)−p(D′c,R)−p(D`D

′
`,R)−p(DcD

′
`,R)−p(D`D

′
c,R)−p(DcD

′
c,R). Note

that p(D,R) is the probability of Alice choosing to detect and Bob to reflect. Since Alice and Bob choose their
actions at random, ideally p(D,D) = p(D,R) = p(R,D) = p(R,R) = 1/4. However, considering the finite sample
size and the inefficiency of switching between the actions, Alice and Bob do not take these probabilities to be
1/4 but compute them considering only the non-useful rounds. Therefore, we have

p0,0 = p(D,R)− p(D`,R)− p(D′`,R)− p(Dc,R)− p(D′c,R)− p(D`D
′
`,R)− p(DcD

′
`,R)

− p(D`D
′
c,R)− p(DcD

′
c,R)− p(Dv,R ; 0)− p(Dv,R ; v)− p(Dv,R ;m). (53)

Note that Alice and Bob cannot directly compute all the quantities from the above expression, say, p(Dv,R ; 0),
p(Dv,R ; 1), etc. They can compute p(D`,R),p(D′`,R) and p(DcD

′
`,R) analogously as in the previous subsection,

given by Equation (48). However, p(Dc,R ∨ D′c,R ∨ D`D
′
c,R ∨ DcD

′
`,R) can be computed directly. We use

p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R ; 0), directly observable, to estimate p(Dv,R ; 0). Therefore,

p(Dv,R ; 0) = p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R ; 0)− p(D`,R ; 0)− p(D′`,R ; 0)− p(D`D

′
`,R ; 0), (54)
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p(D`,R ; 0),p(D′`,R ; 0) and p(DcD
′
`,R ; 0), etc., can again be computed in the same way as before. Therefore,

the final expressions for p0,0 and p1,1, in terms of probabilities computed indirectly, are

p0,0= p(D,R)− p(Dc,R ∨D′c,R ∨D`D
′
c,R ∨DcD

′
`,R)− p(DcD

′
c,R)− p(Dv,R ∨D`,R ∨D′`,R ∨D`D

′
`,R ; 0)

− p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R ; v)− p(Dv,R ∨D`,R ∨D′`,R ∨D`D

′
`,R ;m)

+
(

pA`
pAd

)[
p(Dc,R ∨D′c,R ∨D`D

′
c,R ∨DcD

′
`,R ; 0) + p(Dc,R ∨D′c,R ∨D`D

′
c,R ∨DcD

′
`,R ; v)

+ p(Dc,R ∨D′c,R ∨D`D
′
c,R ∨DcD

′
`,R ;m)− p(Dc,R ∨D′c,R ∨D`D

′
c,R ∨DcD

′
`,R)

]
−
(

pA`
pAd

)2

[p(DcD
′
c,R ; 0) + p(DcD

′
c,R ; v) + p(DcD

′
c,R ;m)− p(DcD

′
c,R)] , (55)

p1,1= p(R,D)− p(R,Dc∨R,D′c ∨R,D`D
′
c ∨R,DcD

′
`)− p(R,DcD

′
c)− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D

′
` ; 0)

− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D
′
` ; v)− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D

′
` ;m)

+
(

pB`
pBd

)[
p(R,Dc ∨R,D′c ∨R,D`D

′
c ∨R,DcD

′
` ; 0) + p(R,Dc ∨R,D′c ∨R,D`D

′
c ∨R,DcD

′
` ; v)

+ p(R,Dc ∨R,D′c ∨R,D`D
′
c ∨R,DcD

′
` ;m)− p(R,Dc ∨R,D′c ∨R,D`D

′
c ∨R,DcD

′
`)
]

−
(

pB`
pBd

)2

[p(R,DcD
′
c ; 0) + p(R,DcD

′
c ; v) + p(R,DcD

′
c ;m)− p(R,DcD

′
c)] . (56)

We can analogously estimate p0,1 by computing p̃1,0 as

p̃1,0 = p(R,R ; 1) = p(RR)− p(R,R ; 0)− p(R,R ; v)− p(R,R ;m). (57)

Therefore,

p0,1= p(1)− p̃0,0 − p̃1,1 − p̃1,0 −
(

pA`
pAd

)
p(Dc,Dv ∨Dc,D

′
` ∨D′c,D` ∨DcD

′
`,Dv ∨D`D

′
c,Dv ; 1)

−
(

pB`
pBd

)
p(Dv,Dc ∨D`,D

′
c ∨D′`,Dc ∨Dv,DcD

′
` ∨Dv,D`D

′
c ; 1) (58)

− 3
(

pA`
pAd

)2
p(DcD

′
c,Dv ; 1)− 3

(
pB`
pBd

)2
p(Dv,DcD

′
c ; 1)− 3

(
pA` pB`
pAd pBd

)
p(Dc,D

′
c ∨D′c,Dc ; 1).

Note that, to compute pkey = p̃00 + p̃11 using the indirect method, we have

p̃0,0= p(D,R)− p(Dc,R ∨D′c,R ∨D`D
′
c,R ∨DcD

′
`,R)− p(DcD

′
c,R)− p(Dv,R ∨D`,R ∨D′`,R ∨D`D

′
`,R ; 0)

− p(Dv,R ∨D`,R ∨D′`,R ∨D`D
′
`,R ; v)− p(Dv,R ∨D`,R ∨D′`,R ∨D`D

′
`,R ;m), (59)

p̃1,1= p(R,D)− p(R,Dc ∨R,D′c ∨R,D`D
′
c ∨R,DcD

′
`)− p(R,DcD

′
c)− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D

′
` ; 0)

− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D
′
` ; v)− p(R,Dv ∨R,D` ∨R,D′` ∨R,D`D

′
` ;m). (60)

From our experimental data, we obtain p0,0 = (8± 2)× 10−3, p1,1 = (6± 2)× 10−3, p0,1 = (3± 2)× 10−3 and
p1,0 = (0.5± 2)× 10−3. All these values are compatible with those obtained with the direct estimation within
experimental uncertainties, which can be reduced by employing a larger sample and improving the single-photon
sources and detectors.

F Dependence on detection efficiency
In this section, we discuss the dependence of the secret key rate on the detection efficiencies of Alice’s and
Bob’s detectors, pAd and pBd , respectively. Note that, since we only consider the first term in Equation (36) to
estimate a bound on S(A|C), we only need to compute the probabilities p0,0,p1,1,p0,1,p1,0 and p(1). However,

p0,0,p1,1,p0,1,p1,0 are independent of pAd and pBd , and it is only p(1) that has this dependence. Therefore, using

the experimental data corresponding to pA` = 1− pAd = 0.42 and pB` = 1− pBd = 0.42, we can rewrite p(1) with
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the explicit dependence on the general parameters, p̃A` and p̃B` , as

N (p̃A` , p̃B` ) = 〈k0,0|k0,0〉+
(

p̃A`
pA`

)(
〈k1

0,0|k1
0,0〉+〈k2

0,0|k2
0,0〉
)
+
(

p̃A`
pA`

)2
〈k3

0,0|k3
0,0〉

+ 〈k1,1|k1,1〉+
(

p̃B`
pB`

)(
〈k1

1,1|k1
1,1〉+〈k2

1,1|k2
1,1〉
)
+
(

p̃B`
pB`

)2
〈k3

1,1|k3
1,1〉

+ 〈k0,1|k0,1〉+ 〈k1,0|k1,0〉+
(

p̃A`
pA`

)
〈k1

0,1|k1
0,1〉+

(
p̃B`
pB`

)
〈k2

0,1|k2
0,1〉

+
(

p̃A` p̃B`
pA` pB`

)(
〈k3

0,1|k3
0,1〉+〈k4

0,1|k4
0,1〉
)
+
(

p̃A`
pA`

)2
〈k5

0,1|k5
0,1〉+

(
p̃B`
pB`

)2
〈k6

0,1|k6
0,1〉

= p(1)(p̃A` , p̃B` ).

(61)

Moreover, perr = p(1)−pkey is also modified accordingly, to be used in computing Q = perr/p(1) to obtain the
secret key rate presented in Figure 3 from the main paper.

G Dependence on transmission loss
In this section, we provide a brief analysis of the dependence of the key rate on the channel losses, for the
case of imperfect photon sources and detectors. The channel loss, after photons passing a distance L through
a medium described by the absorption coefficient α (in dB/unit distance), is given by ` = αL. In our protocol,
the photons are traveling from the server to the agents, and back, meaning that the total distance L is twice the
distance between the server and the agents. This is also the maximal distance between Alice and Bob, achieved
when the two are at the opposite sides of the server.

First, note that in general, the all-powerful adversary is bounded only by the laws of physics. In particular,
it can vary the number of photons in front of Alice’s and Bob’s labs at will. But such assumption would
seem to turn senseless the whole loss analysis. Moreover, the agents can check the photon number statistics in
their labs, thus the adversary must keep them at the levels of the honest case. Finally, note that the overall
photon-adversary state in front of the agents has the same shape as in the lossless case. Indeed, expression 11
represents the most general photon-adversary state that contains up to two photons, in which the probabilities
of having zero, one, or two photons are incorporated in the norms of vectors |ca,b〉C ∈ HC .

In our table-top experimental implementation, due to the low transmission loss in air for the considered
distance, we can assume that the loss is for all practical purposes zero. Let us fix the source parameters p1 and
p2 (the probabilities of single- and double-photon emission per pulse, respectively), the detector efficiency pd
(for simplicity, we assume that the agent’s detectors have the same efficiency), and take a certain number of
rounds N . For that, we can calculate the key rate r(` = 0;N), presented in Figure 4 from the main text. We
have that N = N0 +N1 +N2, where Ni is the number of rounds with i = 0, 1, 2 emitted photons.

Given the transmission probability T (`) = e−
`

10 , one can calculate

N0(`) = N0 + (1− T )N1 + (1− T )2N2

N1(`) = TN1 + 2T (1− T )N2 (62)
N2(`) = T 2N2,

where Ni(`) are the expected numbers of rounds with i = 0, 1, 2 photons present. Note that N0(`) + N1(`) +
N2(`) = N0 +N1 +N2 = N .

Consider the number of rounds N ′ < N , for which N1(`) = p1N
′ and calculate the secret key r(0;N ′). Then,

we have that r(`;N) ≥ r(0;N ′), the secret key for N ′ rounds in the configuration with L = 0 is the lower bound
of the secret key for N rounds with the loss `. This bound is based on the following two arguments:

1. The vacuum pulses neither contribute to the key generation, nor to eavesdropping (they leak no information
to the adversary). Thus, only the numbers of single-photon emissions and double-photon emissions are
relevant, i.e., whenever we have the key rate for the number of rounds that involve certain numbers of the
single-photon and double-photon emissions, we can take this result as valid for any case of having the same
single- and double-photon rounds (provided there are no higher-photon rounds).

2. Given a certain number of rounds, N , as ` grows, both N1(`) and N2(`) decrease. But their ratio does not
stay the same, i.e., there exists no N ′, such that both requirements N1(`) = p1N

′ and N2(`) = p2N
′ are
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satisfied. In other words, the profile of the source changes with `. But, the ratio N1(`)/N2(`) increases: as
` grows, there are proportionally more single-photon rounds than double-photon ones, meaning it is more
likely that Alice and Bob receive a single photon than two photons. Since double-photon rounds are the
ones that, on one side might induce errors in the key, and on the other help the adversary, we actually have
that our r(` = 0;N ′) is in fact the lower bound for r(` > 0;N).

Thus, having our results r(N) for ` = 0, our key rate as a function of the loss ` is given by

r̃(`) ≡ r(N ′) = r

(
N1(`)

p1

)
, (63)

where by r̃ we denote the functional dependence of the key rate on the losses, which is different from the
dependence of r on the number of rounds for ` = 0. Using the second line of (62), N1 = p1N and N2 = p2N ,
we finally have

r̃(`) = r
([

10−`/10p1 + 2 · 10−`/10(1− 10−`/10)p2
]
N
)
. (64)
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